Implications of threshold relationships for projecting fire-regime responses to climate change

Adam M. Young¹, Philip E. Higuera², John Abatzoglou¹, Paul Duffy³, and Feng Sheng Hu⁴

¹Univ. of Idaho, ²University of Montana, ³Neptune and Co., Inc., ⁴University of Illinois

amyoung@uidaho.edu

Alaska Fire Science Consortium April 25, 2017

Outline

- I. Motivation and research questions
- II. Methods
- III. Key results and future implications

Fire and climate

- What controlled past variability in fire activity?
- What do these controls imply about responses to future climate change?

Fire and climate

Westerling (2016) Phil Trans B

*Climate is a major driver of fire activity

Fire and climate

How can we anticipate future fire activity?

Three general approaches

Krawchuk and Moritz (2014) Environmetrics

1. Fire weather index models

Flannigan et al. (2013) For Ecol Mgmt

2. Statistical-correlative models

Moritz et al. (2012) Ecospheres

3. Fire-process models

Pfeiffer et al. (2013) Geosci Model Dev

How can we anticipate future fire activity?

Fire-climate linkages

800

>1600

*Future climate will differ compared to the observational record.

Projected changes in fire activity 2040-2069 Obs. (1950-2009) 2010-2039 2070-2099 50 Median 5 GCMs 100 FRP (yr) 200 400

Testing model transferability

- * Validate models with independent data source outside the observational record
- Paleoecological reconstructions
 - Offer independent records of ecological dynamics over past millennia

Global Change Biology Global Change Biology (2012) 18, 1698–1713, doi: 10.1111/j.1365-2486.2011.02635.x No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models SAMUEL D. VELOZ*, JOHN W. WILLIAMS*, JESSICA L. BLOIS*, FENG HE†, BETTE OTTO-BLIESNER; and ZHENGYU LIU†

Prediction of plant species distributions across six millennia

Pearman et al. (2008)

LETTER

Prediction of plant species distributions across six Pearman et al. (2008)

Limitations to future projections

Why might projections be wrong?

1. Data biases or errors

- Used to construct or inform statistical models
- e.g., GCM projections

2. Changing vegetation and ecosystem dynamics

Changing fireclimate relationships

Nature of fire-climate relationships

*Fire-climate relationships are nonlinear and contain thresholds

*Small errors or changes may significantly change predictions

Key research questions

- (1) How do threshold relationships impact statistical predictions outside the observational range?
- (2) How sensitive are predictions to modified fireclimate relationships?
- (3) What are the implications of using threshold relationships to project 21st-century changes?

Outline

I. Motivation and research questions

II. Methods

- 1. Statistical modeling
- 2. Model-paleodata comparisons

III. Key results and future implications

Statistical modeling in Alaska

Ecography 40: 606-617, 2017

doi: 10.1111/ecog.02205

© 2016 The Authors. Ecography © 2016 Nordic Society Oikos

Subject Editor: Jessica Blois. Editor-in-Chief: Miguel Araújo. Accepted 30 March 2016

Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change

Adam M. Young, Philip E. Higuera, Paul A. Duffy and Feng Sheng Hu

Modeled P(fire) at 30-yr timescales

Spatial variation in fire activity

Presence/absence approach

Statistical models

Boosted Regression Trees (BRTs)

- Machine learning algorithm
- Able to fit complex, nonlinear relationships between response and explanatory variables

Fire Data: Alaska Large Fire Database (fire.ak.blm.gov)

<u>Veg. Data</u>: Circumpolar Arctic Veg. Map (www.geobotany.uaf.edu/cavm)

<u>Climate Data</u>: Scenarios Network for Alaska and Arctic Planning (www.snap.uaf.edu)

Explanatory Variables (1950-2009)

Temp. Warm. Month

Topography

Ann. Moisture Avail. (P-PET)

Veg. Type

Model performance

*Statistical models explain spatial variability in fire presence/absence

Historical fire-climate relationships

*Non-linear fire-climate relationships reveal thresholds

*Small climatic changes may result in large fire regime changes

Outline

Predicting fire activity for 850-1850 CE

Use Global Climate Model (GCMs) experiments

Step 1: Select "best" GCMs

I. GISS-E2-R

II. MPI-ESM-P

III. MRI-CGCM3

Step 2: Downscale GCM data for 850-1850 CE

Native GCM Resolution

e.g., 1991 July temp. anomalies (°C)

Step 3: Create 30-yr climatologies in AK (per pixel)

Alaskan paleofire records

Photo Credits: P. Higuera (2002)

Alaskan paleofire records

29 fire-history reconstructions in AK

Barrett et al. (2013) Ecology; Chipman et al. (2015) Biogeosci; Higuera et al. (2009) Eco Mono; Higuera et al. (2011) Eco Apps; Hu et al. (2010) JGR; Kelly et al. (PNAS)

Model-paleodata comparisons

- Evaluating total number of fires for 850-1850 CE
- NOT evaluating predictions over time

Limitations to future projections

Why might projections be wrong?

1. Data biases or errors

- Used to construct or inform statistical models
- e.g., GCM projections

2. Changing vegetation and ecosystem dynamics

Changing fireclimate relationships

Limitations to future projections

Why might projections be wrong?

- 1. Data biases or errors
- Modify value of temperature threshold

2. Changing fire-climate relationships

 Modify shape of relationship

Modifying fire-climate relationships

*Evaluate sensitivity of model predictions to slight changes in original relationships

Modify threshold values

Three Modifications

+0.50 °C

+1.00 °C

+1.50 °C

Modifying fire-climate relationships

*Evaluate sensitivity of model predictions to slight changes in original relationships

Outline

- I. Motivation and research questions
- II. Methods

Statistical modeling

Model-paleodata comparisons

III. Key results and future implications

Q1: How do thresholds impact statistical predictions outside the observational range?

*Prediction error varies as a function of threshold proximity

Why might projections be wrong?

- 1. Data biases or errors
- Modify value of temperature threshold

2. Changing fire-climate relationships

 Modify shape of relationship

Q2: How sensitive are predictions to modified fire-climate relationships?

T3

Modified threshold values

Prediction error (1950-2009)

T1: +0.50 °C

T2: +1.00 °C

T3: +1.50 °C

Relative Prediction Error (%)

Kobuk Valley

Noatak 150

Q2: How sensitive are predictions to modified fire-climate relationships?

Modified relationship shapes

Prediction error (1950-2009)

*Uncertainty can arise from even small changes in fire-climate relationships

Q3: How do nonlinear, threshold relationships impact our ability to predict future conditions?

Projected changes in fire activity

Young et al. (2017) Ecography

Q3: How do nonlinear, threshold relationships impact our ability to predict future conditions?

MPI-ESM-LR

* Threshold-driven uncertainty will vary across AK regions in the 21st century.

MPI-ESM-LR 2010-2039

What are the spatial patterns?

* Tundra and forest tundra dominate areas of highest uncertainty

- * Tundra and forest tundra dominate areas of highest uncertainty
- * Regions also most vulnerable to fire-regime shifts

Caveats and considerations

Only consider one explanatory variable (temperature)

Do not consider interactions among different driving variables (e.g., temperature and precipitation)

 Only looked at one modeling tool (i.e., boosted regression trees)

Conclusions

Uncertainty varies in relation to threshold proximity, and predictions are sensitive to minor modifications

- Threshold-driven uncertainty will vary across AK regions in the 21st century.
- Anticipating fire-regime shifts may be accompanied by less thresholdcaused uncertainty at the end of century

Acknowledgements

Co-authors and committee members: Drs. Philip E. Higuera, John Abatzoglou, Luigi Boschetti, Paul Duffy, and Feng Sheng Hu

Award 14-3-01-7

Award NNX14AK86H

University of Idaho

College of Natural Resources

PTUNE AND COMPANY

Questions?

Citations

- Barrett, C. M. et al. 2013. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Ecology 94: 389-402.
- Bowman, D. M. J. S. et al. 2009. Fire in the Earth System. Science 324: 481-484.
- Chipman, M. L. et al. 2015. Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska. — Biogeosciences 12: 4017-4027.
- Flannigan, M. et al. 2013. Global wildland fire season severity in the 21st century. Forest Ecol Manag 294: 54-61.
- Higuera, P. E. et al. 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79: 201-219.
- Higuera, P. E. et al. 2011. Variability of tundra fire regimes in Arctic Alaska: millennial scale patterns and ecological implications. Ecol Appl 21: 3211-3226.
- Hu, F. S. et al. 2015. Arctic tundra fires: natural variability and responses to climate change. Front Ecol Environ 13: 369-377.
- Hu, F. S. et al. 2010. Tundra Burning in Alaska: Linkages to Climatic Change and Sea-Ice Retreat. J Geophys Res-Biogeo 115: G04002.
- IPCC, 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535 pp

- Kelly, R. et al. 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. — Proceedings of the National Academy of Sciences of the United States of America 110: 13055-13060.
- Krawchuk, M. A. and Moritz, M. A. 2014. Burning issues: statistical analyses of global fire data to inform assessments of environmental change. Environmetrics 25: 472-481.
- Moritz, M. A. et al. 2012. Climate change and disruptions to global fire activity. Ecosphere 3:
- Pearman, P. B. et al. 2008. Prediction of plant species distributions across six millennia. Ecol Lett 11: 357-369.
- Pfeiffer, M. et al. 2013. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci Model Dev 6: 643-685.
- Veloz, S. D. et al. 2012. No-analog climates and shifting realized niches during the late quaternary: implications for 21stcentury predictions by species distribution models. — Global Change Biol 18: 1698-1713.
- Westerling, A. L. 2016. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society B-Biological Sciences 371:
- Young, A. M. et al. 2017. Climatic thresholds shape northern highlatitude fire regimes and imply vulnerability to future change. — Ecography 40: 606-617.

Data Sources

Fire Data

Alaska Large Fire Database. available from Alaska Interagency Coordination Center. http://fire.ak.blm.gov/.

Observational Climate Data (1950-2009)

Scenarios Network for Alaska and Arctic Planning (SNAP), University of Alaska. 2015. Historical Monthly and Derived Temperature and Precipitation Products - 2 km CRU TS. Retrieved January 2015 from https://www.snap.uaf.edu/tools/data-downloads.

Vegetation Data and Ecoregions Map

Homer, C. et al. 2007. Completion of the 2001 National Land Cover Database for the conterminous United States. — Photogramm Eng Rem S 73: 337-341.

Selkowitz, D. J. and Stehman, S. V. 2011. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska. — Remote Sens Environ 115: 1401-1407.

Nowacki G. et al. 2001. Ecoregions of Alaska. U.S. Geological Survey Open-File Report 02-297 (map).

Walker, D. A. et al. 2005. The circumpolar Arctic vegetation map. — Journal of Vegetation Science 16: 267-282.

Topographic Data

USGS. 1997. Alaska 300m digital elevation model. Anchorage, AK, U.S. Geological Survey EROS Alaska Field Office. http://agdcftp1.wr.usgs.gov/pub/projects/dem/300m/akdem300m.tar.gz.

Boosted Regression Tree Modeling

Elith, J. et al. 2008. A working guide to boosted regression trees. — Journal of Animal Ecology 77: 802-813.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. — Ann Stat 29: 1189-1232.

Ridgeway G with contributions from others. 2015. gbm: Generalized Boosted Regression Models. R package version 2.1.1. http://CRAN.R-project.org/package=gbm.

GCM data[†]

Taylor, K.E., et al. 2012. An Overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93: 485-498

Schmidt, G. A. et al. 2011. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). — Geosci Model Dev 4: 33-45.

Modeling Center	Institute ID	Model Name
NASA Goddard Institute for Space Studies	NASA GISS	GISS-E2-R
Max Planck Institute for Meteorology	MPI-M	MPI-ESM-LR & MPI-ESM-P
Meteorological Research Institute	MRI	MRI-CGCM3

†Data retrieved from Earth System Grid Federation: https://esgf.llnl.gov/